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This paper deals with the resolution of the transport equation describing the comportment 
of electrons during their transmission through metallic targets. The “splitting-up” resolution 
method is used for numerical treatment in the two cases presented here: partial differential 
equation and integro-differential equation corresponding to two different physical hypothesis 
for particles scattering. Discussion is included on the influence of mathematical parameters, 
and the difficulties connected to physical parameters are solved. 

I. INTRODUCTION 

Transmission and backscattering of electrons from metallic targets, as well as 
electron backscattering from bulk targets, have been widely studied, using models 
based upon Boltzmann’s transport equation or upon statistical Monte Carlo methods. 

However, direct solutions of these equations have up to now been obtained only for 
particular cases, related to small angle elastic diffusion [l-3] in the hypothesis of 
continuous slowing down. 

Strickland and Bernstein [4] treat the Fokker-Planck equation and transfer 
equation numerically, neglecting energy effects, but taking into account the large 
angle scattering effects by means of a Rutherford scattering cross section. 

Thus, they can only obtain angular and spatial distribution due to elastic 
scattering; moreover, they never examine the case of a monodirectional electron 
beam. 

We use the same approach in regard to the elastic scattering term, but we take into 
account variations of the cross section with energy; the incident electron beam is 
monoenergetic and monodirectional, and the inelastic scattering is taken into account 
in the continuous slowing down approximation, i.e., there exists a unique relationship 
between energy loss and path length of the particle. 

Boltzmann’s transport equation may be formulated, either as a partial differential 
equation or an integro-differential equation. We propose in this paper a numerical 
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method which allows us to solve such equations in a less limited manner than the 
earlier ones. This is a “splitting-up” method [5, 61, based upon finite differences, and 
it is presented in detail for the case of the small angle scattering equation. It is then 
generalized using an integro-differential equation, for which elastic scattering occurs 
for all possible angles. 

Some results have been obtained for aluminum and compared with those of 
Rostaing [ 71. 

II. GOVERNING EQUATIONS 

A. Generalities 

When an electron beam strikes a metallic target and penetrates inside the material, 
it suffers elastic and inelastic scattering; when the number of collisions is sufficiently 
great, the phenomenon may be described by a transport equation [8]. 

The equations presented here have been written from the hypothesis of continuous 
slowing down; this is equivalent to supposing either that inelastic effects result only 
in an energy loss per unit length of path or that a unique range-energy relations 
exists. 

In these conditions, the energy dispersion of electrons is due only to differences in 
path lengths, and angular deviations are due only to elastic collisions. 

Thus, we can write 

where the path element ds = ]v( dt and u = cos 0 is the angle of the particle velocity 
direction after a collision, with the inward normal. x is the depth measured normally 
from the surface and K,(s, u, x) relates all the elastic processes which induce 
variations of the particle density per unit of time. 

If we denote by oe(O, s) the differential cross section for elastic scattering under an 
angle 0 (with 0 < 0 < II), and by U&S) the total cross section, the equation may be 
written using the notations and indications of Fig. 1. 

q-(8, % x) w, u, x) 1 l 
as =-” ax + w> I 

(.f(s, u’, x) -./Is, u, xl) Nu, u’) du’ 
-1 

with 

a,,(s) = 27~ 
I 

n a,(@, s) sin 0 d0, 
0 

R(~,u’)=21~ :‘“;ss) . d4 ad 1’ R(u, u’) du’ = 1, 
0 er -1 
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FIG. 1. Geometrical arrangement. 

where n,(s) = l/no,,(s) is the mean free path for elastic collisions and n is the 
number of scattering centers per volume unit. 

Under these conditions, the equation may be written 

am, % 4 
=-” 

am % x> f(s, u, x) 
as ax - l,(s) 

1 1 

+4(s) -1 
-I f(s,u’,x).R(u,u’)du’. 

A simplified formulation of this equation, related to the case where the large angle 
scattering is neglected, has been widely used. 

It is obtained from a Taylor’s expansion of the integral term when u is near u’ [3, 
81; this yields 

am u, x) V(s, u, x) 1 a 
as =+ ax + A(S) a24 -- (l-u21 au c 

am, u, x) 
) 
, (2) 

where n(s) is the “transport mean free path” or “momentum transfert mean free 
path” defined by the expression proposed by Bethe, Rose, and Smith [8] 

1 

no=K’n’ I 
n sin 0 ue(O, s)( 1 - cos 0) d@. 

0 

The results given by Eq. (2) could be obtained as particular case of the integro- 
differential equation [ 1 ] by introducing a maximum scattering angle O,, in such a 
manner that for 0 > O,, ~~(6% s) = 0. 
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Thus we have 

V(s, u, x) 
=-” 

V(s, u, x) f(s9 u9 x) 
as ax - n;(s) 

1 

+ Us) -1 
--i” f(s,u’,x).R(Oc,u,u’)du’ (3) 

with 

1 
I 

8, 
- = m&(s) = n * 271 
Us) 

oe(O, s) sin 0 de, 

where hax is a function of O,, u, 24’. 
The analytical expressions of R(u, u’), R(O,, u, u’), and &.,ax are given in the 

appendix. 

B. Initial and Boundary Conditions of the Physical Problems 

Whichever equation is considered, we have the initial conditions 

(a) f(O, LO) = @7h 
(b) f(0, u, 0) = 0 for -1 < u < 1, 
(c) f(0, u, x) = 0 for Vx # 0 and -1 < u < 1 

and the boundary conditions 

(d) f(s, u, 0) = 0, Vu > 0 and Vs > 0, 

(e) f(s, u, R) = 0, Vu, Vs, 

where R is the range of the electrons in the metal under study for the energy in 
question. Condition (e) can be replaced for target of finite thickness X, by condition 
(0 

(f) f(s, u, X) = 0 for Vs and u < 0. 

The geometry of the problem is given in the semi-infinite case and for a target of 
finite thickness in Figs. 2 and 3, respectively, where we have hatched the region 
where initial or boundary conditions are given. 

C. Elastic Scattering Cross Sections 

We use a Rutherford differential cross section with a screening parameter < which 
allows us to avoid divergence for diffusion angles equal to 0; in this way, the 
predominant character of the forward diffusions is maintained. 
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FIG. 2. Representation of initial and boundary conditions in the case of a semi-infinite target. 

FIG. 3. Representation of initial and boundary conditions for a target of thickness X. 

This form of differential cross section can be written 

Z2e4 1 
ue(E, @) = B (1 - cos @ + 2<)2 

and the elastic mean free path is given by 

1,(-q = -& ((1 + 0; 

the values of r as a function of the energy are obtained by adjustment to the values of 
I,(E) found in the literature. 
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II. RESOLUTION METHOD 

A. Principle 

The principle of the “splitting-up” method used here could be briefly expressed in 
the following. 

We have an equation of the form 

“y x) = (A + B)f 

with, for the case of Eq. (2), 

(34 

A=-u; and B = 

We discretize the s variable, writing s = 1. As, I = 0, I,..., and we use the simplified 
notation 

j-(1 As, u, x) = f’(u, x) = f ‘. 

The solution is computed successively for each value of s = 1 As, starting from initial 
condition given for s = 0, i.e., I = 0. 

Equation (3a) could be written, after discretization of the derivative versus “s,” and 
with the choice of an implicit scheme insuring the stability of computation: 

f 1+ 1 
-” N (A + B)f’+ ‘. 

As t3b) 

The approximations made during the transcription from (3a) to (3b) concern the 
discretized form of the derivative and the discretized expression of the right-hand 
member of (3b) connected with the choice of an implicit computing scheme. 

We can write (3b) in the form 

f’ N (Z - (A + B) As)f’+ ‘. (3c) 

To overcome computing difficulties due to the form of the operator (A + B), we 
take an approximate equation where the operators A and B appear separately; we 
have 

Z-(A+B)As=(Z-A.As)(Z--*As)-As’*A*B 

2: (Z-A . As)(Z-B . As) 

and we can write Eq. (3~) as 

f’, (Z-A . As)(Z-B . As)f’+‘. (3c’) 
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(34 

At each step in s, we can split problem (3b) into two parts: 

(1) We solve an equation of the type 

g’- (I-A . As)g’f’ 

with 

g&f'. 

In this first step, thef’ are initial conditions or previously computed values of the 
solution, and the g’+ ’ - are unknown. Equation (3d) could be written 

g 
It I 

- 8’ 
AS 

21A * g’+‘. 

This equation is a discretized form of 

m, UP x) 
as 

= A . g(s, u, x). 

(2) In the second part of the resolution process we solve the equation 

(I-B.As)h’+‘-h’ 

with 
/+t1= 1t1 -f and h’ - g[+ 1. 

(30 

(3d”) 

W 

In this second step the values of h’ are the values of g’+ i computed in the first step, 
the solution h’+ ’ of Eq. (3e) is the final solution f It1 of Eq. (3c’), i.e., the solution of 
(3a) for s = (I + 1) As. 

We can write 

h’+’ -h’ 

As 
=B. h’+’ 

which is a discretized form of 

a&, u, x) 
l3S 

= Bh(s, u, x). 

WI 

(3e”) 

We can represent the process allowing the transition from s = 1 As to s = (1 + 1) As, 
as follows 
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Thus, at each step in s, we solve successively 

&(s, u, x) = &(s, u, x) ws, u, x> 
as then 

as 
= Bh(s, 24, x) 

in an approximate discretized form. 
In this way, we can split a problem where operators A and B appear 

simultaneously in two simpler problems in which these two operators appear 
successively. 

In the case of the equation treated here, the particularly simple form of the 
operator A allows us to obtain the exact solution of Eq. (3d”), in such a manner that 
it is possible in this case to use an explicit scheme which gives the same result. In the 
second step (Eq. (3e’) or (3e”)) we maintain an implicit computing scheme to ensure 
stability of the process. 

The discretization gives 

(1) (g’+’ - $)/As N A . g’ 

or 

(Z+A . As)g’zg’+’ with g’ = f’, 

(2) (h’+’ -h/)/As N B . h’+’ 

or 

(I-B.As)h’+‘-h’ with h/r g’+’ andh’+‘sf’+’ 

which could be written 

(Z - B . As)f’+ ’ N (Z + A . As)f’. 

This gives 

f'"-f' 
As 

EA. f’+B. f’+’ 

=(A+B)f’+‘-A.As 

-- 

term of error 

We obtain, in this way, Eq. (3b), with a “term of error” of the order of As. With this 
approximation, we can see that the proposed method allows us to obtain a solution of 
the initial equation (3a). 

The main advantages of the “splitting-up” method lies in the fact that there is no 
restrictive condition concerning the choice of As with respect to the stability problem; 
furthermore, the method can be generalized without particular difficulties to the 
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integro-differential equation used here, which is particularly difficult with other 
methods as that proposed by Brown and Ogilvie [ 11, Bennett and Roth [2], or 
Rostaing et al. [7]. 

B. Choice of the Increments and Discretization of Initial and Boundary Conditions 

The variables s, u, and x are divided into intervals As, Au, and Ax with Au = l/N, 
we have 

s=lAs, therefore 0 < s Q R, i.e., 0 < I< I,+, with 1, = R/As; 

u= 1-ndu, therefore -1 < u < 1, i.e., 0 < n < 2N; 

x=mAx, which gives for a target of finite thickness X, 0 <x <X, i.e., 
0 < m < Mx with M, = X/Ax, and for a semi-infinite target, 
0 < x < R, i.e., 0 & m < M, with M,, = R/Ax. 

Using the method of “characteristics curves,” we are led in evaluating the 
derivatives to use for x increments varying with the diffusion angles. The relation 
between s and x leads us to choose an increment A’x function of u. written as 

A’x=uAs=(l-nAu)As=AsAu(N-n). 

Thus, when u = 1, we have A’x = As. This particular value of A’x will be the 
“increment” in x; we will denote this value as Ax. 

This is a justification a posteriori of the remark of Bennett and Roth [2] who 
indicate that such a choice is necessary to obtain a “physically correct” solution. 

The initial conditions (a), (b), and (c) can be condensed in the discretized form: 

(a’) f (0, n, m) = (1/2n) 6(n, 0) 6(m, 0) for 0 < n < 2N and 0 < m ( M, or MR, 

where 6 is Kronecker’s symbol. 
The boundary conditions are 

(d’) f (I, n, 0) = 0 for 0 < 1< lM and 0 < n < N, 

(e’) f (l, n, MR) = 0 for 0 < 1 Q lM and 0 < n < 2N. 

This last condition is replaced in the case of a finite thickness target, by 

(f) f(l,n,M,)=O for O<l<l, and N<n<2N. 

C. Resolution Method 

First step. One solves an equation of the type 

&T(& u, x) w, u, x) 
as =-14 ax (4) 
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Ax=As 

FIG. 4. Discretization versus u and x. 

using boundary conditions (d’) and (f’) and the initial condition (a’). As previously 
mentioned, we use a discretization method which varies with the sign of u; this 
particular point is illustrated by Fig. 4. 

(a) For 0 < u < 1, i.e., 0 < IZ <N. 

Equation (4) is discretized in the following way: 

and 

ag(s, 24, x) g(s + AS, u, x> - g(s, K xl 
as = AS 

--u ws9 uv x> 
ax =-” 

ds, U, x) - g(s, u, x - u As) 
uAs 

9 

whence 

g(s + As, u, x) = g(s, u, x - u As) if x-uAs>O 

and 
g(s + As, u, x) = 0 if x-uAs (0. 

With the grid defined for x, values such as (x - u As) for u # I or ti # -1 do not 
appertain to the grid and the corresponding values of the function are obtained by 
linear interpolation in x, starting from values on the grid; thus, we obtain 

g(s + As, u, x) = (1 - u) g(s, u, x) + ug(s, u, x - Ax) 

or, with the discretization integers I, n, m, 

g(1 + 1, n, m) = (n f Au) g(l, n, m) + (1 - n Au) g(l, n, m - 1) 

with the boundary condition (d’). 
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(b) For -1 < ZJ < 0, i.e., N < n < 2N 

in an identical manner, we obtain 

g(s + As, u, x) = (1 + U) g(s, u, x) - u&s, U, x + Ax); 

thus, with the discretization integers 1, n, m, 

g(1 + 1, n, m) = (2 - n Au) g(l, n, m) - (1 - n Au) g(l, n, m + 1) 

with the boundary condition (f’) 

(c) For u = 0, i.e., n = N, the second member of (4) is zero and the solution of 
discretized equation is 

g(s + As, 0, x) = g(s, 0, x) 

or, using the discretization integers, 

g(l+ l,N,m)= g(W,m). 

From the point of view of the notation, we have g(l, n, m) N f’. 

Second step. We must now solve an equation of the type 

a+, u, x) 
i?S 

. (5) 

This elliptical equation, which is degenerated at its limits, does not have boundary 
conditions; it may also be written as 

a+, u, x) 1 -2u qs, u, x) iBz(s, u, x) 
as =- A(s) au +(l---*) au2 ’ 

An implicit discretization versus s enable us to write 

h(s + As, u, x) - h(s, u, x) 
As 

1 -2u Ws + As, u, x) cY*h(s + As, u, x) =- 
A(s) ihI 

+ (1 -U’> 
ih* 

with 

and 

h(s, u, x) N g(s t As, u, x), i.e., h’= g”’ 

h(s +As,u,x)=f(stAs,u,x), i.e., h’+‘=f”‘. 
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The discretization of angular derivatives leads to an equation of the type 

{B’}{h(s + As, u, x)1 = {h(s, u, xl}, 

where (B’ ] is a matrix which depends, for a given value of s, only upon u and 
(h(s + As, U, x)) is a solution vector. 

Discretization Versus the Variable u 

A centered discretization has been chosen for angular derivatives. However, for 
u = 1 and u = -1, the equation becomes simpler, and the remaining first derivative 
may be expressed by noncentered formulas, using a node on the boundary and 
another node inside the domain. 

General case: -1 < u < 1 (0 < n < 2N). With previously defined notations, the 
discretized equation may be written 

h(l, n, m) = h(l + 1, n, m) + A(s;l~Au [B(n,n+ l)h(l+ Ln+ l,m) 

with 

+ B(n, n) h(l+ 1, n, m) + B(n, n - 1) h(l+ 1, n - 1, m)] (6) 

B(n,n+ l)=dAu+nAu-2n-1, 

B(n, n) = 4n - 2n2 Au, 

B(n,n- 1)=n2Au-ndu-2n+ 1. 

Particular cases: u = 1 (n = 0). Equation (6) becomes simpler and may be 
written, in its discretized form, 

h(l, 0, m) = h(l+ LO, m) + 
As 

A(s) - Au 

. @?(O,O) h(l+ l,O, m) + B(O, 1) h(l+ 1, 1, m)) 

with 

B(O,O) = 2 and B(0, 1) = -2 

:u = -1, i.e., n=2N. 

By analogy with the previous case this leads to 

h(l, 2N, m) = h(l+ 1,2N, m) + ncs;; Au @(a~, 2N) h(l+ lv2N9 m> 

(7) 

+B(2N,2N- l)h(l+ 1,2N- Lm)) (8) 
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with 

B(2N, 2N) = 2 and B(2N, 2N - 1) = -2. 

Equations (6)-(8) could be written in the matrix form 

{h(l,i,m)}= {l}+ I AS 
A(s) . Au (9) 

77 

where {h(l, i, m)} and {h(l+ 1, i, m)} are 2N t 1 dimension vectors and { 1) and {B} 
are square matrices of size (2N t 1)(2N t 1). 

Dependance Versus x 

The solution vector {h(Z + 1, i, m)} must be computed for every value of x in the 
discretized domain, i.e., Vm. 

Three cases must be considered 

x#O andx#X, i.e., m#O and m#M,, 

x = 0, m = 0, 

x=x, m=M,, 

General case: x # 0 and x # X. We obtain a tridiagonal system of size 
(2N + 1)(2N t 1) which may be written 

h(lt l,O,m) 
h(l t 1, 1, m) 

i 

** ! h(l+ 1,2N, m) 

The solution is obtained by direct resolution of the system by Gauss’ method for 
three-diagonal matrices. 

Calculation on the input side: x = 0 + m = 0. The calculation must be carried out 
for -1 < u < 0 because of boundary values which are null for 0 < u < 1. 

One can then write 
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41, 0, 0) 
Ml, 1, 0) 

i(l, 2N, 0) 
I 

N 
1 

-------1 0 0 0 0 0 
xxx 

coefficients 
ofB’ 

xxx 
xx 

- (Ml+ LN,O) \. 

1 I h(l+ 1,2N, 0) 

Calculation on the output side: x =X-+ m = M,. Here, the calculation must be 
carried out for 0 < u ,< 1 because of boundary values which are null for -1 < u < 0. 

The following simplified matrix is used: 

N 
xx 1 
X 

coefficients 
ofB’ 

! 000001 

h(l + LO, MX) 

h(l + 1, N, MY) 

D. Continuity Condition 

Using the previously defined notation for operators in the transport equation, the 
continuity condition may be expressed, following Bethe, Rose, and Smith, by the 
relation 

I ’ B.f.du=O. 
-1 

(10) 

The values of matrix {B} elements as also linear interpolations inf imply that this 
condition is fulfilled, and it ensures the conservation of the particles number during 
the computation. 
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III. GENERALIZATION OF THE COMPUTING METHOD IN THE CASE OF THE 
INTEGRO-DIFFERENTIAL EQUATION (EQ. (1)) 

We present the resolution method in the case of a maximal scattering angle equal 
to K; this corresponds to the most realistic physical point of view. The use of a cutoff 
angle 0, is only an artefact allowing us to treat the small angle diffusion problem by 
simply introducing a supplementary parameter in a computation program. 

So, our resolution method is valid whatever the value of the cutoff angle. 
The diffusion equation may be written, using the notation previously indicated, 

v 6, u, x> 
=-” 

aft& u, x) f(s, u, x) 
as ax - /g(s) 

1 ’ 

+ G(s) -1 
-j- f(s,u’,x)R(u,u’)du’. 

In this case, initial conditions and boundary conditions are the same as in the case of 
small angle diffusion, and the equation may be written 

af@;;9 xl = (A + B) * f(s, 24, x) 

with 

A/=-u: 

and 

The resolution method is identical to the one used in the case of small angle 
diffusion. Thus, only the type of discretization of B operator is developed. 

A. Discretization of B Operator 

In this discretization versus u, some difficulties arise, essentially due to the integral 
term. Indeed, the kernel R(u, u’) shows a marked characteristic of directivity for 
u = u’, related to the choice of a Rutherford differential cross section. 

Furthermore, the number of nodes on the range of I( must not be too great because 
it is in direct relationship to the size of a variable coefftcient matrix, analogous to the 
(B’} matrix of the previous section, which must be inverted at every step in s. 
Moreover, the method of integration must be chosen in such a manner that it 
describes the analytical properties of R(u, u’) with a numerical accuracy. 
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Indeed, we have, by definition, 

I 
1 

R(u, 24’) du’ = 1, vu. 
-I 

Under these conditions, if we chose the quadrature formula in such a manner that 

’ B”h = I R(u, 24’) h(d) du’ = c B$h(zdj), -1 i 
where i is the grid index in u, j the grid index in n’, and Uj the corresponding value of 
u’, then, the elements I?; should respect the condition 

C&$=1, Vi. 
j 

To partially overcome this difficulty, we use the method proposed by Strickland et 
al. [4] and used again in [9], which can be resumed as follows: 

(a) The grid in u is chosen with an increment of 0.2 or 0.1 and the integral is 
replaced by a finite sum of integrals, evaluated between the values of u belaying to 
the grid. 

(b) h(s, u’, x) is linearly interpolated versus u. 
(c) Then the coefficient B$ may be written, with u0 = -1 and u,, = 1, 

B”(ui, uj) = B:!j = I”-’ (“-;, ” ) R(Ui, 24’) dd 
ui 

+ 
i 

uj with O<j<2N, O<i<uV. (13) 
Uitl 

These integrals are computed by splitting each interval Au into 10 zones. The 
calculation is carried out on each of these zones by an eight order Gauss method. 
Under these conditions, the properties of R(u, u’) are respected during the numerical 
integration. 

B. Discretized Form of the Equation 

This equation, which describes the second step of our method may be written in its 
discretized form versus u: 

W, u, x) h(s, u, x) 
as = - n:(s) + & ,zo B”(u, uj) h(sy uj 3 Xl (14) 
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which gives, with an implicit discretization versus s, 

AS 
h(l, n, m) = h(l+ l,n, ml + - 

us> ( 
h(l+ l,n,m)- .f B;,“Jl(l+ Ln’vm) 

It’=0 ) 

or, with a matrix notation, 

O&i<2N, (15) 

with 
{B} = (1) -{B”} 

where matrix (B) of size (2N + 1)(2N + 1) is a full matrix. 

Remark. Introducing a cutoff angle 0, different of rr, we obtain a matrix which 
approaches a tridiagonal shape allowing us to recover the results given by small angle 
diffusion equation in Section II. 

C. x Dependence 

The x dependence is identical to that presented in Section I. 

D. Continuity Condition 

This condition must express the conservation of the particle number when the 
energy is varying. This condition, which has been written in its general form (10) for 
small angles, becomes 

I ’ f(s,u,x)du-(’ du j' f(s, u’, x) R(O,, u, u’) du’ = 0. (16) -1 -1 -1 
Now, in the discretization, a linear interpolation off has been made between two 

values belaying to the grid. This necessarily implies that the first integral is computed 
by the trapeze method with an increment Au, and, consequently, the integration 
versus u in the double integral is computed in the same way. 

Under these conditions, the continuity condition can be written as a series of 
relations between coefficients B$ 

jBb’,o + By,, + .a. + ByN- 1,o + fB&, = f , 

+B;,, t B;‘,, + ..a + By,-,,, + fB&,, = 1, 
(17) 

fBb’,,, t By,,, t .a. +B;,,-,,,,tfB&,,=f. 
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However, it is a priori evident that while elements of matrix {B”} may be 
computed precisely, the continuity condition cannot be perfectly respected, since f is 
linearly interpolated. Indeed one can write 

I ’ f(S,U’,X).R(Oc,u,u’)du’=K(s,u,x). 
-1 

The function K(s, u, x) has the same properties as R(O,, u, u’) from the point of 
view of directivity versus u. Under these conditions one can say that integration 
versus u is not correctly evaluated by the trapeze method starting from a reduced size 
grid in u and hence cannot be employed numerically. 

Therefore the numerical values of the B”(i,j) coefficients were slightly modified in 
order to ensure verification of relation (17), while maintaining the properties (12) of 
the kernel R(O,, u, u’); so, the form of angular distributions due to elastic scattering 
alone is maintained. 

IV. RESULTS AND DISCUSSION 

We present here some results directly comparable with experimental results: energy 
distribution and transmission yield. 

In order to obtain these results, f is expanded in spherical harmonics, whose 
components are I;,, F,, F,. Taking into account the relation between E and s, 
Bennett and Roth [2] give the following relations: 

dVR E - F,@, 0) 
dE = (AU/~) . As . EJdE/ds),, ’ I 

E. &R 
tlR = - . dE, 

o dE 

dzlr E - F,@, 4 
c 
Eo dr7. 

dE = (AU/~) . As . E,(dE/d& ’ qT= - . dE. 
O& 

A. Physical Parameters 

Mean Free Path 

The values of “transport” m.f.p. used in small angle scattering equations were 
deduced from values of differential cross sections computed by Cailler et al. [lo] by 
the “phase shift” method. In the integro-differential equation, we use values of elastic 
scattering m.f.p. given by Ganachaud [ 111. These values could be represented by the 
relation 

1, (cm) = 6.048 x 10P6E2 . c( 1 + r) with E in keV. 
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Law of Energy Loss 

With a view to comparing our results with those of Rostaing [ 121, we use the 
range-energy relation 

.y = 335(E;.53 - E’.53) with s in A and E in keV. 

B. Transmission and Backscattering Yields 

Results obtained with the small angle diffusion equation for some values of target 
thickness are shown in Table I; they are absolutely identical to Rostaing’s values [3]. 

TABLE I 

Theoretical (Small Angle Diffusion Equation) and Experimental Values of 
Transmission and Backscattering Yields for Al 

Thickness X (A) 200 500 1000 

E, = 3 keV VR 0.04 0.11 0.11 
IIT 0.91 0.59 0.11 
VT 0.86 0.57 0.08 
expt. 

E, = 2.5 keV VR 0.065 0.12 
)Ir 0.84 0.4 
VT 0.8 I 0.38 
expt. 

E,=2keV 

Ep = 1.5 keV 

0.095 
0.73 
0.69 

VR 
VT 
VT 
expt. 

0.12 
0.49 
0.47 

We have used increments As = 2 A and Au = 0.2 in accordance with the choice of 
Bennett and Roth [2]. The verifications effected with As = 5 A give results differing 
from the preceding ones by 1 or 2 %. 

The results obtained with the integro-differential equation are shown in Table II. 
One can see that values of qT corresponding to 0, = 7r/4 and 0, = K “bracket” the 
results given by the small angle scattering equation. 

These phenomena are shown in Fig. 5, where we mention the variations of qR and 
qr as functions of 0, for a target thickness of 1000 A and an energy of 3 keV. In the 
same figure are also indicated values of qR and qT given by the small angle equation. 
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TABLE II 

Theoretical (Integro-Differential Equation) and Experimental Values of 
Transmission and Backscattering Yields for Al 

4 C-V) Thickness X (A) 200 500 1000 

3 0, = rr/4 

0, = R 

2.5 0, = R/4 

0, = I[ 

1.5 0, = x/4 

Oc=R 

0.03 0.09 0.09 
0.92 0.65 0.18 
0.075 0.165 0.16 
0.86 0.52 0.075 
0.86 0.57 0.08 

0.04 0.085 
0.88 0.5 
0.11 0.165 
0.79 0.33 
0.81 0.38 

0.065 
0.8 
0.15 
0.66 
0.69 

0.075 
0.62 
0.175 
0.4 1 
0.47 

Nofe. Theoretical results are shown for two values of the limit diffusion angle 8, : 8, = 17/4 and 
0, = x. 

Remarks. Tests realized with values of increment du = 0.2 and du = 0.1 show 
only small differences. 

Tests upon ds and Au for the integro-differential equation give results analogous to 
those previously mentioned for the small angle scattering equation. 

C. Energy Distributions 
Energy distributions of electrons transmitted through XX&thick targets, for some 

values of E,,, are shown in Fig. 6 in the case of the small angle scattering equation; 
they are identical with Rostaing’s values. Analogous results obtained with the integro- 
differential equation can be seen in Fig. 7; they show that observations concerning 
transmission yield values are confirmed by the aspect of energy distribution curves. 

However, these results disagree with experimental results [9, 12, 131. The effect of 
the scattering limit angle 0, for a 1000-A-thick target and an energy of 3 keV is 
shown in Fig. 8 and a comparison is made with results given by the small angle 
scattering equation. These results confirm those obtained for transmission yield v, 
shown in Fig. 5. 
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A%;% 
.3 - 

.2 - 

---- 
.l - 

FIG. 5. Theoretical variations of ~)a and nr (integro-differential equation) as function of the limit 
diffusion angle 0, for 1000.A-thick aluminum target and a primary energy 3 keV. The dotted line 
indicates the common value of nR and t]r given in the same conditions by small angle diffusion equation. 

1’ p= 3 keV 

1 1 lA 2.5 

E(keV) , 

1 2 3 

FIG. 6. Theoretical energy distributions of electrons transmitted through 500-A-thick aluminum 
target for different values of primary energy (small angle diffusion equation). 
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3 

FIG. 7. Theoretical energy distribution of electrons transmitted through 500-A-thick aluminum 
target for different values of primary energy E,, and limit diffusion angle @, (integro-differential 
equation). 

FIG. 8. Theoretical energy distribution of electrons transmitted through lOOO-A-thick aluminum 
target, for a primary energy of 3 keV and for different values of 0, (integro-differential equation). The 
dashed curve shows the analogous result given by small angle diffusion equation. 

581/39/l-4 
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V. CONCLUSION 

The numerical resolution method proposed here was initially developed for 
treatment of partial differential equations. Our method presents two advantages over 
the earlier ones [l-3]: on one hand if, with the same increments, computing time is 
identical to that of the other methods, it is possible to increase the size of increments 
and therefore to reduce computing time without stability problems; on the other hand, 
there is no difficulty in extending this method to integro-differential equation 
treatment. 

Comparisons made between the different computing methods have shown that 
results obtained by the integro-differential equation make it possible by varying the 
cutoff angle 0, to find again the results given by the small angle scattering equation. 

The most important problems encountered are connected with the directivity of the 
kernel R(u, u’) (or R(O,, U, u’)) for u = u’; the discretization of these kernels is 
subject to difficulties in connection with the form of differential cross sections; these 
problems vanish for example when the energy is lowered and the directivity of the 
kernel is diminished. In the same way the problem of the “continuity condition” is 
not tied to the numerical treatment method, but essentially to the choice of physical 
parameters. 

APPENDIX 

The “function of diffusion” was established by Strickland [8] for 0, = YZ. We have 

R(u, u’) = 25(1 + <)(I + 2r-- uu’) 
(u’ - ld* + 45( 1 - uu’) + 4t2)3’2 

and for 0 < 0, < rr, we have 

R(O,, u, u’) = 2C( 1 + 24 - u,) 1 b . sin & 

741 - UC) (a’ - b*) a - b cos #M 

l/z37 tg$& 
+ d& arctg (a -b) 2 

with the azimuthal angle 4, defined by 

&lax = 0 if lB-8’)a@o,, 

4 Max = n for B+8’<0,, 2rr-((B+(Y)<@,, and 
)0-S,\<@, with u= 1 or u=-1. 

In all other cases 
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with 

45 

u,=coso,, 
(I= 1 +2(-W’, 

The expression of R(O,, u, u’) we have obtained (9) is different from that of 
Strickland, but all the expressions are the same for 0, = z. 
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